Fubini's Theorem

Definition

This theorem implies that a double integral over a rectangle region can be always calculated from two iterated integrals. If z=f(x,y)z = f(x, y) is integrable over D={(x,y)axb,cyd}D = \{ (x, y) \vert a \leq x \leq b, c \leq y \leq d \}, the double integral over DD is Df(x,y)dA=abcdf(x,y)dydx=cdabf(x,y)dxdy\begin{aligned} \iint_D f(x, y)dA = \int_a^b \int_c^d f(x, y)dydx = \int_c^d \int_a^b f(x, y)dxdy \end{aligned}

If some variables are included in the interval of integration, the strong Fubini’s theorem is a workaround, which switches the order of integration.

Definite Integral to Double Integral

The definite integral is about the limit of the area surrounded by a closed curve, while the double integral is about the limit of the volume surrounded by the closed curve.

Case 1. Area Surrounded by One Curve and Two Lines

Fubini1-1

As shown in the right figure, the area SS surrounded by the curve f(x)f(x) and two lines x=x1x = x_1 and x=x2x = x_2 is S=x1x2f(x)dx=x1x20f(x)dydx\begin{aligned} S = \int_{x_1}^{x_2} f(x) dx = \int_{x_1}^{x_2} \int_0^{f(x)} dy dx \end{aligned}

Case 2. Area Surrounded by Two Curves and Two Lines

Fubini1-2

As shown in the right figure, the area SS surrounded by the curves f(x)f(x) and g(x)g(x), and two lines x=x1x = x_1 and x=x2x = x_2 is S=x1x2f(x)g(x)dx=x1x2g(x)f(x)dydx\begin{aligned} S = \int_{x_1}^{x_2} f(x) - g(x) dx = \int_{x_1}^{x_2} \int_{g(x)}^{f(x)} dy dx \end{aligned}

Note that the order of the interval [g(x),f(x)][g(x), f(x)] can be changed depending on the graphs of f(x)f(x) and g(x)g(x).

Choosing Proper Axis

This is based on the fact that the area is the same whether with respect to the xx-axis or yy-axis.

Case 1. Area Below a Line

Fubini2-1

With respect to each axis, the area surrounded by the line y=xy=x, x=1x = 1, and xx-axis can be obtained as follows. {  Sx=01xdx=010xdydx(x-axis)  Sy=01(1y)dy=01y1dxdy(y-axis)\begin{aligned} \begin{cases} \; S_x = \displaystyle \int_{0}^{1} x dx = \displaystyle \int_{0}^{1} \int_0^{x} dy dx & (x \text{-axis}) \\\\ \; S_y = \displaystyle \int_{0}^{1} (1 - y) dy = \displaystyle \int_{0}^{1} \int_y^{1} dx dy & (y \text{-axis}) \end{cases} \end{aligned}

Case 2. Area Below a Parabola

Fubini2-2

With respect to each axis, the area surrounded by the line y=x2y=x^2, x=1x = 1, and xx-axis can be obtained as follows. {  Sx=01x2dx=010x2dydx(x-axis)  Sy=01(1y)dy=01y1dxdy(y-axis)\begin{aligned} \begin{cases} \; S_x = \displaystyle \int_{0}^{1} x^2 dx = \displaystyle \int_{0}^{1} \int_0^{x^2} dy dx & (x \text{-axis}) \\\\ \; S_y = \displaystyle \int_{0}^{1} (1 - \sqrt{y}) dy = \displaystyle \int_{0}^{1} \int_{\sqrt{y}}^{1} dx dy & (y \text{-axis}) \end{cases} \end{aligned}

Inequalities Representing the Area

To represent the area of a double integral as inequalities, use the relation with the close integral variable first. 010x2dydx(x-axis)    D={(x,y)    0x1,  0yx2}02y21dxdy(y-axis)    D={(y,x)    0y2,  y2x1}\begin{aligned} \displaystyle \int_{0}^{1} \int_0^{x^2} dy dx \quad (x \text{-axis}) &\implies D = \{ (x, y) \; \vert \; 0 \leq x \leq 1, \; 0 \leq y \leq x^2 \} \\\\ \displaystyle \int_{0}^{2} \int_{y^2}^{1} dx dy \quad (y \text{-axis}) &\implies D = \{ (y, x) \; \vert \; 0 \leq y \leq 2, \; y^2 \leq x \leq 1 \} \end{aligned}

How to Switch the Order of Integration

When a double integral is impossible, changing the order of integration is a workaround.

Example 1

010x2dydx(x-axis)    Dx={(x,y)    0x1,  0yx2}\begin{aligned} \displaystyle \int_{0}^{1} \int_0^{x^2} dy dx \quad (x \text{-axis}) &\implies D_x = \{ (x, y) \; \vert \; 0 \leq x \leq 1, \; 0 \leq y \leq x^2 \} \end{aligned}

After getting the inequalities, switch the base axis from the xx-axis to the yy-axis.

Fubini2-2

Then, update DxD_x to DyD_y, and reorder the integration. Dy={(y,x)    0y1,  yx1}    01y1dxdy(y-axis)\begin{aligned} D_y = \{ (y, x) \; \vert \; 0 \leq y \leq 1, \; \sqrt{y} \leq x \leq 1 \} &\implies \displaystyle \int_{0}^{1} \int_{\sqrt{y}}^{1} dx dy \quad (y \text{-axis}) \end{aligned}

Example 2

01y212dxdy(y-axis)    Dy={(y,x)    0y1,  y2x12}\begin{aligned} \displaystyle \int_{0}^{1} \int_{\frac{y}{2}}^{\frac{1}{2}} dx dy \quad (y \text{-axis}) &\implies D_y = \{ (y, x) \; \vert \; 0 \leq y \leq 1, \; \cfrac{y}{2} \leq x \leq \cfrac{1}{2} \} \end{aligned}

After getting the inequalities, switch the base axis from the yy-axis to the xx-axis.

Fubini3-1

Then, update DyD_y to DxD_x, and reorder the integration. Dx={(x,y)    0x12,  0y2x}    01202xdydx(x-axis)\begin{aligned} D_x = \{ (x, y) \; \vert \; 0 \leq x \leq \cfrac{1}{2}, \; 0 \leq y \leq 2x \} &\implies \displaystyle \int_{0}^{\frac{1}{2}} \int_{0}^{2x} dy dx \quad (x \text{-axis}) \end{aligned}

Example 3

01x1dydx(x-axis)    Dx={(x,y)    0x1,  xy1}\begin{aligned} \displaystyle \int_{0}^{1} \int_{\sqrt{x}}^{1} dy dx \quad (x \text{-axis}) &\implies D_x = \{ (x, y) \; \vert \; 0 \leq x \leq 1, \; \sqrt{x} \leq y \leq 1 \} \end{aligned}

After getting the inequalities, switch the base axis from the xx-axis to the yy-axis.

Fubini3-2

Then, update DxD_x to DyD_y, and reorder the integration. Dy={(y,x)    0y1,  0xy2}    010y2dxdy(y-axis)\begin{aligned} D_y = \{ (y, x) \; \vert \; 0 \leq y \leq 1, \; 0 \leq x \leq y^2 \} &\implies \displaystyle \int_{0}^{1} \int_{0}^{y^2} dx dy \quad (y \text{-axis}) \end{aligned}

Reordering Techniques

Case 1. Only The Lower Bound of the Outer Integral is 00 (Counterclockwise Rotation)

In this case, the form of the double integral looks like 0af(x)f(a)f(x,y)dydx\displaystyle \int_0^a \int_{f(x)}^{f(a)} f(x,y) dy dx. For example, the following reordering is allowed. 01y1dxdy=010x2dydx\begin{aligned} \int_{0}^{1} \int_{\sqrt{y}}^{\color{red}{1}} dx dy = \int_{\color{blue}{0}}^{\color{red}{1}} \int_{\color{blue}{0}}^{x^2} dy dx \end{aligned}

The technique is as follows.

  • The outer integral
    • The lower bound is 00.
    • The upper bound is the same as the upper bound of the inner integral of the original double integral.
  • The inner integral
    • The lower bound is 00.
    • To determine the upper bound, set the lower bound of the inner integral of the original double integral to another variable, say, xx. In this example, y=x\sqrt{y} = x. Then, the upper bound is yy, which is x2x^2.

Similar other examples are as follows.

  • 01y1dxdy=010xdydx\displaystyle \int_{0}^{1} \int_{y}^{1} dx dy = \int_{0}^{1} \int_{0}^{x} dy dx,
  • 0πyπdxdy=0π0xdydx\displaystyle \int_{0}^{\pi} \int_{y}^{\pi} dx dy = \int_{0}^{\pi} \int_{0}^{x} dy dx,
  • 0πyπdxdy=0π0xdydx\displaystyle \int_{0}^{\sqrt{\pi}} \int_{y}^{\sqrt{\pi}} dx dy = \int_{0}^{\sqrt{\pi}} \int_{0}^{x} dy dx,
  • 013x3dydx=030y3dxdy\displaystyle \int_{0}^{1} \int_{3x}^{3} dy dx = \int_{0}^{3} \int_{0}^{\frac{y}{3}} dx dy,
  • 02y21dxdy=0102xdydx\displaystyle \int_{0}^{2} \int_{\frac{y}{2}}^{1} dx dy = \int_{0}^{1} \int_{0}^{2x} dy dx,
  • 04x22dydx=0202ydxdy\displaystyle \int_{0}^{4} \int_{\frac{x}{2}}^{2} dy dx = \int_{0}^{2} \int_{0}^{2y} dx dy,
  • 02y24dxdy=040xdydx\displaystyle \int_{0}^{2} \int_{y^2}^{4} dx dy = \int_{0}^{4} \int_{0}^{\sqrt{x}} dy dx,
  • 01y131dxdy=010x3dydx\displaystyle \int_{0}^{1} \int_{y^\frac{1}{3}}^{1} dx dy = \int_{0}^{1} \int_{0}^{x^3} dy dx,
  • 01sin1yπ2dxdy=0π20sinxdydx\displaystyle \int_{0}^{1} \int_{\sin^{-1}y}^{\frac{\pi}{2}} dx dy = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\sin x} dy dx.

Case 2. The Upper Bound of the Inner Integral is a Variable

For example, the following reordering is allowed. 01x2xdydx=01yydxdy\begin{aligned} \int_{0}^{\color{red}{1}} \int_{x^2}^{\color{red}{x}} dy dx = \int_{\color{blue}{0}}^{\color{red}{1}} \int_{y}^{\sqrt{y}} dx dy \end{aligned}

The technique is as follows.

  • The outer integral
    • The lower bound is 00.
    • Let aa be the upper bound of the outer integral of the original double integral. Also, let a function ff be the upper bound of the inner integral of the original double integral since it is not a constant. Then, the upper bound is f(a)f(a).
  • The inner integral
    • To determine the lower bound, set the upper bound of the inner integral of the original double integral to another variable, say, yy. In this example, x=yx = y. Then, the lower bound is xx, which is yy.
    • To determine the upper bound, set the lower bound of the inner integral of the original double integral to another variable, say, yy. In this example, x2=yx^2 = y. Then, the upper bound is xx, which is y\sqrt{y}.

Similar other examples are as follows.

  • 02x22xdydx=04y2ydxdy\displaystyle \int_{0}^{2} \int_{x^2}^{2x} dy dx = \int_{0}^{4} \int_{\frac{y}{2}}^{\sqrt{y}} dx dy,
  • 08y4y3dxdy=02x34xdydx\displaystyle \int_{0}^{8} \int_{\frac{y}{4}}^{\sqrt[3]{y}} dx dy = \int_{0}^{2} \int_{x^3}^{4x} dy dx.

Case 3. The Upper Bound of the Inner Integral is cos\cos (Not Passing Through the Origin)

For example, the following reordering is allowed. 0π20acosydxdy=0a0cos1xadydx\begin{aligned} \int_{\color{red}{0}}^{\frac{\pi}{2}} \int_{0}^{\color{red}{a \cos y}} dx dy = \int_{\color{blue}{0}}^{\color{red}{a}} \int_{\color{blue}{0}}^{\cos^{-1}\frac{x}{a}} dy dx \end{aligned}

The technique is as follows.

  • The outer integral
    • The lower bound is 00.
    • Let aa be the lower bound of the outer integral of the original double integral. Also, let a function ff be the upper bound of the inner integral of the original double integral since it is not a constant. Then, the upper bound is f(a)f(a).
  • The inner integral
    • The lower bound is 00.
    • To determine the upper bound, set the upper bound of the inner integral of the original double integral to another variable, say, xx. In this example, acosy=xa \cos y = x. Then, the upper bound is yy, which is cos1(x/a)\cos^{-1}(x/a).

Similar other examples are as follows.

  • 010cos1ydxdy=0π20cosxdydx\displaystyle \int_{0}^{1} \int_{0}^{\cos^{-1} y} dx dy = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\cos x} dy dx,
  • 0204x2dydx=0404ydxdy\displaystyle \int_{0}^{2} \int_{0}^{4 - x^2} dy dx = \int_{0}^{4} \int_{0}^{\sqrt{4 - y}} dx dy.

Application

Example 1. Calculate

01x1(1+y2)52dydx\begin{aligned} \int_{0}^{1} \int_{x}^{1} (1 + y^2)^{\frac{5}{2}} dy dx \end{aligned}

Fubini-EX1

After getting the inequalities, switch the base axis from the xx-axis to the yy-axis. Then, update DxD_x to DyD_y, and reorder the integration. 01x1(1+y2)52dydx    Dx={(x,y)    0x1,  xy1}    Dy={(y,x)    0y1,  0xy}    010y(1+y2)52dxdy\begin{aligned} &\int_{0}^{1} \int_{x}^{1} (1 + y^2)^{\frac{5}{2}} dy dx \\ \implies &D_x = \{ (x, y) \; \vert \; 0 \leq x \leq 1, \; x \leq y \leq 1 \} \\ \implies &D_y = \{ (y, x) \; \vert \; 0 \leq y \leq 1, \; 0 \leq x \leq y \} \\ \implies &\int_{0}^{1} \int_{0}^{y} (1 + y^2)^{\frac{5}{2}} dx dy \end{aligned}

Now, this integral can be calculated as follows. 010y(1+y2)52dxdy=01y(1+y2)52dxdy=[17(1+y2)72]01=8217\begin{aligned} \int_{0}^{1} \int_{0}^{y} (1 + y^2)^{\frac{5}{2}} dx dy &= \int_{0}^{1} y (1 + y^2)^{\frac{5}{2}} dx dy = \left[ \cfrac{1}{7} (1 + y^2)^{\frac{7}{2}} \right]_0^1 = \cfrac{8\sqrt{2} - 1}{7} \end{aligned}

Example 2. Calculate

0πyπcosxxdxdy\begin{aligned} \int_{0}^{\pi} \int_{y}^{\pi} \cfrac{\cos x}{x} dx dy \end{aligned}

From the formula, 0πyπcosxxdxdy=0π0xcosxxdydx=0πcosxxxdx=[sinx]0π=0\begin{aligned} \int_{0}^{\pi} \int_{y}^{\pi} \cfrac{\cos x}{x} dx dy = \int_{0}^{\pi} \int_{0}^{x} \cfrac{\cos x}{x} dy dx = \int_{0}^{\pi} \cfrac{\cos x}{x} x dx = \left[ \sin x \right]_0^{\pi} = 0 \end{aligned}

Example 3. Calculate

010xxex2y2dydx+12x11xex2y2dydx\begin{aligned} \int_{0}^{1} \int_{0}^{x} x e^{x^2 - y^2} dy dx + \int_{1}^{2} \int_{x - 1}^{1} x e^{x^2 - y^2} dy dx \end{aligned}

Fubini-EX3

After drawing each inequality from the two integrals, it can be noticed that two regions can be merged. 01yy+1xex2y2dxdy\begin{aligned} \int_{0}^{1} \int_{y}^{y + 1} x e^{x^2 - y^2} dx dy \end{aligned}

Now, this integral can be directly calculated as follows. 01yy+1xex2y2dxdy=01e2y+112dy=e3e24\begin{aligned} \int_{0}^{1} \int_{y}^{y + 1} x e^{x^2 - y^2} dx dy = \int_{0}^{1} \cfrac{e^{2y+1} - 1}{2} dy = \cfrac{e^3 - e - 2}{4} \end{aligned}

Example 4. Calculate

0tan1πxtan1xxdx\begin{aligned} \int_{0}^{\infty} \cfrac{\tan^{-1} \pi x - \tan^{-1} x }{x} dx \end{aligned}

Using the following known integral result, this can be changed to a double integral. 11+x2=tan1x    0tan1πxtan1xxdx=0[tan1xy]1πxdx=01π11+x2y2dydx\begin{aligned} &\int \cfrac{1}{1 + x^2} = \tan^{-1} x \\\\ \implies &\int_{0}^{\infty} \cfrac{\tan^{-1} \pi x - \tan^{-1} x }{x} dx = \int_{0}^{\infty} \cfrac{\left[ \tan^{-1} xy \right]_1^{\pi}}{x} dx = \int_{0}^{\infty} \int_{1}^{\pi} \cfrac{1}{1 + x^2 y^2} dy dx \end{aligned}

Then, from the definition of Fubini’s theorem, this can be calculated as follows. 01π11+x2y2dydx=1π011+x2y2dxdy=1π[tan1xyy]0dy=π21π1y  dy=π2[lny]1π=π2lnπ\begin{aligned} \int_{0}^{\infty} \int_{1}^{\pi} \cfrac{1}{1 + x^2 y^2} dy dx &= \int_{1}^{\pi} \int_{0}^{\infty} \cfrac{1}{1 + x^2 y^2} dx dy = \int_{1}^{\pi} \left[ \cfrac{\tan^{-1} xy}{y} \right]_0^{\infty} dy \\ &= \cfrac{\pi}{2} \int_{1}^{\pi} \cfrac{1}{y} \; dy = \cfrac{\pi}{2} \left[ \ln y \right]_1^{\pi} = \cfrac{\pi}{2} \ln \pi \end{aligned}


© 2025. All rights reserved.