Algebraic Techniques 03 - Inequalities

✔ Quadratic Mean(RMS), Arithmetic Mean, Geometric Mean, and Harmonic Mean

For all positive real numbers  a1,,an,a12++an2na1++anna1annn1a1++1an\begin{aligned} \text{For all positive real numbers} \; a_1, \cdots, a_n&, \\\\ \sqrt{\frac{a_1^2 + \cdots + a_n^2}{n}} \geq \frac{a_1 + \cdots + a_n}{n} &\geq \sqrt[n]{a_1 \cdots a_n} \geq \frac{n}{\frac{1}{a_1} + \cdots + \frac{1}{a_n}} \end{aligned}

✔ Hölder’s Inequality

For all non-negative real numbers  a11,,a1n,ak1,,akn,(a11++a1n)(ak1++akn)(a11a1nk++ak1aknk)k\begin{aligned} \text{For all non-negative real numbers} \; a_{11}, \cdots, &a_{1n}, a_{k1}, \cdots, a_{kn}, \\\\ (a_{11} + \cdots + a_{1n})\cdots(a_{k1} + \cdots + a_{kn}) &\geq \left( \sqrt[k]{a_{11} \cdots a_{1n}} + \cdots + \sqrt[k]{a_{k1} \cdots a_{kn}} \right)^k \end{aligned}

For positive real numbers x\, x and yy, prove the following inequality.

xx4+y2+yy4+x21xy\begin{aligned} \frac{x}{x^4 + y^2} + \frac{y}{y^4 + x^2} \leq \frac{1}{xy} \end{aligned}

[Solution] By AM-GM on only denominators, xx4+y2x2x2y=12xy,yy4+x2y2y2x=12xy\begin{aligned} \frac{x}{x^4 + y^2} \leq \frac{x}{2x^2y} = \frac{1}{2xy}, \quad \frac{y}{y^4 + x^2} \leq \frac{y}{2y^2x} = \frac{1}{2xy} \end{aligned}

The problem is proved after adding two inequalities.

For real numbers a\, a, bb, and cc in (0,4)(0, 4), prove that at least one of the following inequalities is 1\geq 1.

1a+14b,1b+14c,1c+14a\begin{aligned} \frac{1}{a} + \frac{1}{4 - b}, \quad \frac{1}{b} + \frac{1}{4 - c}, \quad \frac{1}{c} + \frac{1}{4 - a} \end{aligned}

[Solution] For a proof by contradiction, let the statement negate. That is, assume that 1a+14b<1,1b+14c<1,1c+14a<11a+14a+1b+14b+1c+14c<3\begin{aligned} \frac{1}{a} + \frac{1}{4 - b} < 1, \quad \frac{1}{b} &+ \frac{1}{4 - c} < 1, \quad \frac{1}{c} + \frac{1}{4 - a} < 1 \\\\ \Longrightarrow \frac{1}{a} + \frac{1}{4 - a} + \frac{1}{b} &+ \frac{1}{4 - b} + \frac{1}{c} + \frac{1}{4 - c} < 3 \end{aligned}

By AM-HM, 1a+14a22a+(4a)=11a+14a+1b+14b+1c+14c3\begin{aligned} \frac{1}{a} + \frac{1}{4 - a} &\geq \frac{2^2}{a + (4 - a)} = 1 \\\\ \Longrightarrow \frac{1}{a} + \frac{1}{4 - a} + \frac{1}{b} &+ \frac{1}{4 - b} + \frac{1}{c} + \frac{1}{4 - c} \geq 3 \end{aligned}

which means the contradiction.

Given the following inequalities for positive real numbers a\, a and bb, prove that a+b2\, a + b \leq 2.

a2b1aandb2a1b\begin{aligned} |a - 2b| \leq \frac{1}{\sqrt{a}} \quad \text{and} \quad |b - 2a| \leq \frac{1}{\sqrt{b}} \end{aligned}

[Solution] After multiplying each inequality by a\sqrt{a} and b\sqrt{b} and square them, a(a2b)21,b(2ab)21\begin{aligned} a(a - 2b)^2 \leq 1, \quad b(2a - b)^2 \leq 1 \end{aligned}

Adding the above inequalities, a34a2b+4ab2+4a2b4ab2+b3=a3+b32\begin{aligned} a^3 - 4a^2b + 4ab^2 + 4a^2b - 4ab^2 + b^3 = a^3 + b^3 \leq 2 \end{aligned}

By Hölder’s inequality, 84(a3+b3)=(13+13)(13+13)(a3+b3)(a+b)3  a+b2\begin{aligned} 8 &\geq 4(a^3 + b^3) = (1^3 + 1^3)(1^3 + 1^3)(a^3 + b^3) \geq (a + b)^3 \\\\ \Longrightarrow \; &a + b \leq 2 \end{aligned}

Given the following inequality for positive real numbers x\, x, yy, and zz, prove that x+y+z3\, x + y + z \geq \sqrt{3}.

xy+yz+zx1x2+y2+z2\begin{aligned} xy + yz + zx \geq \frac{1}{\sqrt{x^2 + y^2 + z^2}} \end{aligned}

[Solution] Simplifying the condition more which is very tricky, (xy+yz+zx)2(x2+y2+z2)1\begin{aligned} (xy + yz + zx)^2 (x^2 + y^2 + z^2) \geq 1 \end{aligned}

By AM-GM, (xy+yz+zx)2(x2+y2+z2)(2(xy+yz+zx)+x2+y2+z23)3=((x+y+z)23)3\begin{aligned} (xy + yz + zx)^2 (x^2 + y^2 + z^2) \leq \left( \frac{2(xy + yz + zx) + x^2 + y^2 + z^2}{3} \right)^3 = \left( \frac{(x + y + z)^2}{3} \right)^3 \end{aligned}

It implies that ((x+y+z)23)31((x+y+z)23)1x+y+z3\begin{aligned} \left( \frac{(x + y + z)^2}{3} \right)^3 \geq 1 \Longleftrightarrow \left( \frac{(x + y + z)^2}{3} \right) \geq 1 \Longleftrightarrow x + y + z \geq \sqrt{3} \end{aligned}

Reference

[1] Titu Andreescu, 105 Algebra Problems.


© 2024. All rights reserved.