Algebraic Techniques 03 - Inequalities

✔ Quadratic Mean(RMS), Arithmetic Mean, Geometric Mean, and Harmonic Mean

For all positive real numbers  a1,,an,a12++an2na1++anna1annn1a1++1anThe equality holds if and only if  a1==an.\begin{aligned} \text{For all positive real numbers} \; a_1, \cdots, a_n&, \\\\ \sqrt{\frac{a_1^2 + \cdots + a_n^2}{n}} \geq \frac{a_1 + \cdots + a_n}{n} &\geq \sqrt[n]{a_1 \cdots a_n} \geq \frac{n}{\frac{1}{a_1} + \cdots + \frac{1}{a_n}} \\\\ \text{The equality holds if and only if} \; a_1 = \cdots = a_n. \end{aligned}

The condition that this equality holds is often quite useful when finding a minimum.

✔ Hölder’s Inequality

For all non-negative real numbers  a11,,a1n,  ak1,,akn,(a11++a1n)(ak1++akn)(a11a1nk++ak1aknk)k\begin{aligned} \text{For all non-negative real numbers} \; a_{11}, \cdots, &a_{1n}, \; a_{k1}, \cdots, a_{kn}, \\\\ (a_{11} + \cdots + a_{1n})\cdots(a_{k1} + \cdots + a_{kn}) &\geq \left( \sqrt[k]{a_{11} \cdots a_{1n}} + \cdots + \sqrt[k]{a_{k1} \cdots a_{kn}} \right)^k \end{aligned}

✔ Jensen’s Inequality

For all on-negative real numbers  λ1,,λn  such that  λ1++λn=1,{λ1f(x1)++λnf(xn)f(λ1x1++λnxn)(f is convex)λ1f(x1)++λnf(xn)f(λ1x1++λnxn)(f is concave)\begin{aligned} \text{For all on-negative real numbers} \; \lambda_{1}, \cdots, \lambda_{n} \; \text{such that} \; \lambda_{1} + \cdots + \lambda_{n} = 1, \\\\ \begin{cases} \lambda_{1} f(x_1) + \cdots + \lambda_{n} f(x_n) \geq f(\lambda_{1} x_1 + \cdots + \lambda_{n} x_n) \quad \text{(} f \text{ is convex)} \\\\ \lambda_{1} f(x_1) + \cdots + \lambda_{n} f(x_n) \leq f(\lambda_{1} x_1 + \cdots + \lambda_{n} x_n) \quad \text{(} f \text{ is concave)} \end{cases} \end{aligned}

For positive real numbers x\, x and yy, prove the following inequality.

xx4+y2+yy4+x21xy\begin{aligned} \frac{x}{x^4 + y^2} + \frac{y}{y^4 + x^2} \leq \frac{1}{xy} \end{aligned}

[Solution] By AM-GM on only denominators, xx4+y2x2x2y=12xy,yy4+x2y2y2x=12xy\begin{aligned} \frac{x}{x^4 + y^2} \leq \frac{x}{2x^2y} = \frac{1}{2xy}, \quad \frac{y}{y^4 + x^2} \leq \frac{y}{2y^2x} = \frac{1}{2xy} \end{aligned}

The problem is proved after adding two inequalities.

For real numbers a\, a, bb, and cc in (0,4)(0, 4), prove that at least one of the following inequalities is 1\geq 1.

1a+14b,1b+14c,1c+14a\begin{aligned} \frac{1}{a} + \frac{1}{4 - b}, \quad \frac{1}{b} + \frac{1}{4 - c}, \quad \frac{1}{c} + \frac{1}{4 - a} \end{aligned}

[Solution] For a proof by contradiction, let the statement negate. That is, assume that 1a+14b<1,1b+14c<1,1c+14a<11a+14a+1b+14b+1c+14c<3\begin{aligned} \frac{1}{a} + \frac{1}{4 - b} < 1, \quad \frac{1}{b} &+ \frac{1}{4 - c} < 1, \quad \frac{1}{c} + \frac{1}{4 - a} < 1 \\\\ \Longrightarrow \frac{1}{a} + \frac{1}{4 - a} + \frac{1}{b} &+ \frac{1}{4 - b} + \frac{1}{c} + \frac{1}{4 - c} < 3 \end{aligned}

By AM-HM, 1a+14a22a+(4a)=11a+14a+1b+14b+1c+14c3\begin{aligned} \frac{1}{a} + \frac{1}{4 - a} &\geq \frac{2^2}{a + (4 - a)} = 1 \\\\ \Longrightarrow \frac{1}{a} + \frac{1}{4 - a} + \frac{1}{b} &+ \frac{1}{4 - b} + \frac{1}{c} + \frac{1}{4 - c} \geq 3 \end{aligned}

which means the contradiction.

Given the following inequalities for positive real numbers a\, a and bb, prove that a+b2\, a + b \leq 2.

a2b1aandb2a1b\begin{aligned} |a - 2b| \leq \frac{1}{\sqrt{a}} \quad \text{and} \quad |b - 2a| \leq \frac{1}{\sqrt{b}} \end{aligned}

[Solution] After multiplying each inequality by a\sqrt{a} and b\sqrt{b} and square them, a(a2b)21,b(2ab)21\begin{aligned} a(a - 2b)^2 \leq 1, \quad b(2a - b)^2 \leq 1 \end{aligned}

Adding the above inequalities, a34a2b+4ab2+4a2b4ab2+b3=a3+b32\begin{aligned} a^3 - 4a^2b + 4ab^2 + 4a^2b - 4ab^2 + b^3 = a^3 + b^3 \leq 2 \end{aligned}

By Hölder’s inequality, 84(a3+b3)=(13+13)(13+13)(a3+b3)(a+b)3  a+b2\begin{aligned} 8 &\geq 4(a^3 + b^3) = (1^3 + 1^3)(1^3 + 1^3)(a^3 + b^3) \geq (a + b)^3 \\\\ \Longrightarrow \; &a + b \leq 2 \end{aligned}

Given the following inequality for positive real numbers x\, x, yy, and zz, prove that x+y+z3\, x + y + z \geq \sqrt{3}.

xy+yz+zx1x2+y2+z2\begin{aligned} xy + yz + zx \geq \frac{1}{\sqrt{x^2 + y^2 + z^2}} \end{aligned}

[Solution] Simplifying the condition more which is very tricky, (xy+yz+zx)2(x2+y2+z2)1\begin{aligned} (xy + yz + zx)^2 (x^2 + y^2 + z^2) \geq 1 \end{aligned}

By AM-GM, (xy+yz+zx)2(x2+y2+z2)(2(xy+yz+zx)+x2+y2+z23)3=((x+y+z)23)3\begin{aligned} (xy + yz + zx)^2 (x^2 + y^2 + z^2) \leq \left( \frac{2(xy + yz + zx) + x^2 + y^2 + z^2}{3} \right)^3 = \left( \frac{(x + y + z)^2}{3} \right)^3 \end{aligned}

It implies that ((x+y+z)23)31((x+y+z)23)1x+y+z3\begin{aligned} \left( \frac{(x + y + z)^2}{3} \right)^3 \geq 1 \Longleftrightarrow \left( \frac{(x + y + z)^2}{3} \right) \geq 1 \Longleftrightarrow x + y + z \geq \sqrt{3} \end{aligned}

Given A\, A, BB, and CC are the three angles of a triangle, find the minimum of

cotA2+cotB2+cotC2\begin{aligned} \cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} \end{aligned}

[Solution] Since A+B+C=πA + B + C = \pi, each cot\cot above is positive. By AM-GM, cotA2+cotB2+cotC23cotA2cotB2cotC23\begin{aligned} \cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} \geq 3 \sqrt[3]{\cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}} \end{aligned}

Recalling that the equality holds if and only if A/2=B/2=C/2A/2 = B/2 = C/2, the minimum of this expression can be found when they are all π/6\pi / 6. So, the minimum is 3cotπ6cotπ6cotπ63=3333=33\begin{aligned} 3 \sqrt[3]{\cot \frac{\pi}{6} \cot \frac{\pi}{6} \cot \frac{\pi}{6}} = 3 \sqrt[3]{\sqrt{3}^3} = 3 \sqrt{3} \end{aligned}

For real numbers a\, a, bb, and cc, prove the following inequality.

a2+b2+c2(a+b+c)23\begin{aligned} a^2 + b^2 + c^2 \geq \frac{(a + b + c)^2}{3} \end{aligned}

[Solution] Let f(x)=x2f(x) = x^2. Since ff is convex, by Jensen’s inequality, 13a2+13b2+13c2(a+b+c3)2a2+b2+c2(a+b+c)23\begin{aligned} \frac{1}{3} a^2 + \frac{1}{3} b^2 + \frac{1}{3} c^2 &\geq \left( \frac{a + b + c}{3} \right)^2 \\\\ \Longrightarrow a^2 + b^2 + c^2 &\geq \frac{(a + b + c)^2}{3} \end{aligned}

Note that λ1=λ2=λ3=1/3\lambda_{1} = \lambda_{2} = \lambda_{3} = 1/3 and λ1+λ2+λ3=1\lambda_{1} + \lambda_{2} + \lambda_{3} = 1.

References

[1] Titu Andreescu, 105 Algebra Problems.

[2] IMO기출문제풀이집


© 2024. All rights reserved.