Algebraic Techniques 02 - Factorization

✔ Sophie-Germain’s Identity

x4+4y4=(x2+2xy+2y2)(x22xy+2y2)\begin{aligned} x^4 + 4y^4 = (x^2 + 2xy + 2y^2)(x^2 - 2xy + 2y^2) \end{aligned}

✔ Useful Identities to Remember

a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca)\begin{aligned} a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) \end{aligned} a2+b2+c2abbcca=(ab)2+(bc)2+(ca)22\begin{aligned} a^2 + b^2 + c^2 - ab - bc - ca = \frac{(a - b)^2 + (b - c)^2 + (c - a)^2}{2} \end{aligned} a2+b2+c2+ab+bc+ca=(a+b)2+(b+c)2+(c+a)22\begin{aligned} a^2 + b^2 + c^2 + ab + bc + ca = \frac{(a + b)^2 + (b + c)^2 + (c + a)^2}{2} \end{aligned}

Factorize x4+x2+1\, x^4 + x^2 + 1.


[Solution] Adding and subtracting x2x^2, x4+x2+1=x4+2x2+1x2=(x2+1)2x2=(x2x+1)(x2+x+1)\begin{aligned} x^4 + x^2 + 1 = x^4 + 2x^2 + 1 - x^2 = (x^2 + 1)^2 - x^2 = (x^2 - x + 1)(x^2 + x + 1) \end{aligned}

Another solution is to use the technique in the previous post x4+x2+1=(x2+a)2(bx+c)2=x4+(2ab2)x22bcx+a2c2\begin{aligned} x^4 + x^2 + 1 &= (x^2 + a)^2 - (bx + c)^2 \\ &= x^4 + (2a - b^2)x^2 - 2bcx + a^2 - c^2 \end{aligned}

Comparing coefficients, 2ab2=12a - b^2 = 1, 2bc=0-2bc = 0, and a2c2=1a^2 - c^2 = 1. So b=0b = 0 or c=0c = 0. If b=0b = 0, it makes a=1/2a = 1/2 and there is a contradiction getting c2+3/4=0c^2 + 3/4 = 0. So c=0c = 0 and a2=1a^2 = 1. Finally, a=1a = 1 and b2=1b^2 = 1 since another contradiction comes up when a=1a = -1, which allows the same result. x4+x2+1=(x2+1)2x2=(x2x+1)(x2+x+1)\begin{aligned} x^4 + x^2 + 1 = (x^2 + 1)^2 - x^2 = (x^2 - x + 1)(x^2 + x + 1) \end{aligned}

Factorize x5+x+1\, x^5 + x + 1.


[Solution] Adding and subtracting x2x^2, x5+x+1=x5x2+x2+x+1=x2(x31)+x2+x+1\begin{aligned} x^5 + x + 1 = x^5 - x^2 + x^2 + x + 1 = x^2 (x^3 - 1) + x^2 + x + 1 \end{aligned}

Considering that x31=(x1)(x2+x+1)x^3 - 1 = (x - 1)(x^2 + x + 1), x2(x31)+x2+x+1=(x2+x+1)(x2(x1)+1)=(x2+x+1)(x3x2+1)\begin{aligned} x^2 (x^3 - 1) + x^2 + x + 1 = (x^2 + x + 1)(x^2 (x - 1) + 1) = (x^2 + x + 1)(x^3 - x^2 + 1) \end{aligned}

Given the following equations for all real numbers a\, a, bb, cc, and dd, find d+a+2da\, d + a + 2da.

a+b+2ab=3,b+c+2bc=4,c+d+2cd=5\begin{aligned} a + b + 2ab = 3, \quad b + c + 2bc = 4, \quad c + d + 2cd = -5 \end{aligned}

[Solution] It is important to observe the patterns of these equations. Using the fact 1+2(x+y+2xy)=1+2x+2y+4xy=(1+2x)(1+2y)\begin{aligned} 1 + 2(x + y + 2xy) = 1 + 2x + 2y + 4xy = (1 + 2x)(1 + 2y) \end{aligned}

these equations can be factorized as (1+2a)(1+2b)=7,(1+2b)(1+2c)=9,(1+2c)(1+2d)=9\begin{aligned} (1 + 2a)(1 + 2b) = 7, \quad (1 + 2b)(1 + 2c) = 9, \quad (1 + 2c)(1 + 2d) = -9 \end{aligned}

Let x=2a+1x = 2a + 1, y=2b+1y = 2b + 1, z=2c+1z = 2c + 1, and t=2d+1t = 2d + 1, then xy=7xy = 7, yz=9yz = 9, and zt=9zt = -9. So, y=7/xy = 7/x, z=9/y=9x/7z = 9/y = 9x/7, and (9x/7)t=9(9x/7)t = -9. It implies that xt=7xt = -7. d+a+2da=xt12=4\begin{aligned} d + a + 2da = \frac{xt - 1}{2} = -4 \end{aligned}

For all real numbers a\, a, bb, cc, and dd such that a2+b2+c2+d21\, a^2 + b^2 + c^2 + d^2 \leq 1, find the maximum of the following expression.

(a+b)4+(a+c)4+(a+d)4+(b+c)4+(b+d)4+(c+d)4\begin{aligned} (a + b)^4 + (a + c)^4 + (a + d)^4 + (b + c)^4 + (b + d)^4 + (c + d)^4 \end{aligned}

[Solution] The main idea that is hard to come up with is adding (ab)4(a - b)^4 to (a+b)4(a + b)^4. (a+b)4+(ab)4=a4+4a3b+6a2b2+4ab3+b4+a44a3b+6a2b24ab3+b4=2(a4+b4+6a2b2)\begin{aligned} \color{crimson}{(a + b)^4 + (a - b)^4} &= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4 + a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4 \\ &= \color{crimson}{2(a^4 + b^4 + 6a^2b^2)} \end{aligned}

Using this fact, (a+b)4+(a+c)4+(a+d)4+(b+c)4+(b+d)4+(c+d)4+(ab)4+(ac)4+(ad)4+(bc)4+(bd)4+(cd)4=6(a4+b4+c4+d4)+12(a2b2+b2c2+c2d2+d2a2+a2c2+b2d2)\begin{aligned} &(a + b)^4 + (a + c)^4 + (a + d)^4 + (b + c)^4 + (b + d)^4 + (c + d)^4 \\ + \, &(a - b)^4 + (a - c)^4 + (a - d)^4 + (b - c)^4 + (b - d)^4 + (c - d)^4 \\ = \, &6(a^4 + b^4 + c^4 + d^4) + 12(a^2b^2 + b^2c^2 + c^2d^2 + d^2a^2 + a^2c^2 + b^2d^2) \end{aligned}

Considering (x+y+z+t)2=x2+y2+z2+t2+2(xy+yz+zt+tx+xz+yt)(x + y + z + t)^2 = x^2 + y^2 + z^2 + t^2 + 2(xy + yz + zt + tx + xz + yt), the right side of the above equation is 6(a2+b2+c2+d2)26(a^2 + b^2 + c^2 + d^2)^2. By the constraint of the problem, 6(a2+b2+c2+d2)266(a^2 + b^2 + c^2 + d^2)^2 \leq 6. Therefore, (a+b)4+(a+c)4+(a+d)4+(b+c)4+(b+d)4+(c+d)46\begin{aligned} (a + b)^4 + (a + c)^4 + (a + d)^4 + (b + c)^4 + (b + d)^4 + (c + d)^4 \leq 6 \end{aligned}

The equal sign is valid when a=b=c=d=±1/2a = b = c = d = \pm 1 / 2.

For real numbers a\, a, bb, and cc, prove the following equation.

(ab)5+(bc)5+(ca)5=5(ab)(bc)(ca)(a2+b2+c2abbcca)\begin{aligned} (a - b)^5 + (b - c)^5 + (c - a)^5 = 5(a - b)(b - c)(c - a)(a^2 + b^2 + c^2 - ab - bc - ca) \end{aligned}

[Solution] Let x=abx = a - b, y=bcy = b - c, and z=caz = c - a, then x+y+z=0x + y + z = 0 and a2+b2+c2abbcca=(ab)2+(bc)2+(ca)22=x2+y2+z22\begin{aligned} a^2 + b^2 + c^2 - ab - bc - ca = \frac{(a - b)^2 + (b - c)^2 + (c - a)^2}{2} = \frac{x^2 + y^2 + z^2}{2} \end{aligned}

So, it is sufficient to prove that x5+y5+z5=52xyz(x2+y2+z2)\begin{aligned} x^5 + y^5 + z^5 = \frac{5}{2} xyz (x^2 + y^2 + z^2) \end{aligned}

By z=xyz = -x - y, x5+y5+z5=x5+y5(x+y)5=(x+y)(x4x3y+x2y2xy3+y4(x+y)4)=(x+y)(x3y+x2y2xy34x3y6x2y24xy3)=5(x+y)(x3y+xy3+x2y2)=5zxy(x2+y2+xy)\begin{aligned} x^5 + y^5 + z^5 &= x^5 + y^5 - (x + y)^5 \\ &= (x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4 - (x + y)^4) \\ &= (x + y)(-x^3y + x^2y^2 - xy^3 - 4x^3y - 6x^2y^2 - 4xy^3) \\ &= -5(x + y)(x^3y + xy^3 + x^2y^2) \\ &= 5zxy(x^2 + y^2 + xy) \end{aligned}

Since 52xyz(x2+y2+z2)=52xyz(x2+y2+(x+y)2)=5xyz(x2+xy+y2)\begin{aligned} \frac{5}{2} xyz (x^2 + y^2 + z^2) = \frac{5}{2} xyz (x^2 + y^2 + (x + y)^2) = 5xyz(x^2 + xy + y^2) \end{aligned}

comparing two equations completes the proof. Another way to prove this is by using relationship between roots and coefficients of cubic equation. Let S=xy+yz+zxS = xy + yz + zx and P=xyzP = xyz, then for any real number tt, (tx)(ty)(tz)=t3+StP\begin{aligned} (t - x)(t - y)(t - z) = t^3 + St - P \end{aligned}

Since xx, yy, and zz are the solutions of t3+StP=0t^3 + St - P = 0, so does t5+St3Pt2=0t^5 + St^3 - Pt^2 = 0. Adding two equations, xx, yy, and zz are also the solutions of t5+S(PSt)Pt2=0t^5 + S(P - St) - Pt^2 = 0. It shows that x5+y5+z5+S(3PS(x+y+z))P(x2+y2+z2)=0\begin{aligned} x^5 + y^5 + z^5 + S(3P - S(x + y + z)) - P(x^2 + y^2 + z^2) = 0 \end{aligned}

Using the fact that x+y+z=0x + y + z = 0, x5+y5+z5+3SPP(x2+y2+z2)=0x5+y5+z5=P(x2+y2+z23S)\begin{aligned} & x^5 + y^5 + z^5 + 3SP - P(x^2 + y^2 + z^2) = 0 \\ \Longleftrightarrow \, & x^5 + y^5 + z^5 = P(x^2 + y^2 + z^2 - 3S) \end{aligned}

So, it is sufficient to prove that x2+y2+z23(xy+yz+zx)=52(x2+y2+z2)\begin{aligned} x^2 + y^2 + z^2 - 3(xy + yz + zx) = \frac{5}{2} (x^2 + y^2 + z^2) \end{aligned}

It implies that x2+y2+z2+2(xy+yz+zx)=(x+y+z)2=0x^2 + y^2 + z^2 + 2(xy + yz + zx) = (x + y + z)^2 = 0, which is obvious because x+y+z=0x + y + z = 0.

Reference

[1] Titu Andreescu, 105 Algebra Problems.


© 2024. All rights reserved.