Advanced Convergence Tests

For the convergence tests of series, the nn-th term test should be the first. If the limit as nn approaches infinity is not zero, the series diverges. Otherwise, other convergence tests should be applied after that. For simple tests, the following techniques may be useful even without proof.

A. Limit Comparison

Assume that bn\sum b_n is already known about if it diverges or converges. To test an\sum a_n, let limnan/bn=k\displaystyle \lim_{n \to \infty} a_n / b_n = k.

  • If k>0k > 0, both an\sum a_n and bn\sum b_n converge or diverge together.
  • If k=0k = 0, an\sum a_n converges if bn\sum b_n converge.
  • If k=k = \infty, an\sum a_n diverges if bn\sum b_n diverges.

B. Ratio — Useful When the Series includes 2n2^n, n!n!, or nnn^n Term

When R=limnan+1/anR = \displaystyle \lim_{n \to \infty} a_{n+1} / a_n,

  • If 0<R<10 < R < 1, an\sum a_n converges.
  • If R>1R > 1, an\sum a_n diverges.
  • If R=1R = 1, this test is inconclusive.

C. Cauchy — Useful With a Power Series

When r=limnnanr = \displaystyle \lim_{n \to \infty} \sqrt{n}{a_n},

  • If r<1r < 1, an\sum a_n converges.
  • If r>1r > 1, an\sum a_n diverges.
  • If r=1r = 1, this test is inconclusive.

D. Intuition

  • n=1an±cnbnn=1anbn  \displaystyle \sum_{n=1}^{\infty} \cfrac{a_n \pm c_n}{b_n} \approx \displaystyle \sum_{n=1}^{\infty} \cfrac{a_n}{b_n} \; if ancna_n \gg c_n.
  • n=1anbnn=11bn  \displaystyle \sum_{n=1}^{\infty} \cfrac{a_n}{b_n} \approx \displaystyle \sum_{n=1}^{\infty} \cfrac{1}{b_n} \; if anbna_n \ll b_n.
  • n=1ln(1+an)n=1an\displaystyle \sum_{n=1}^{\infty} \ln (1 + a_n) \approx \displaystyle \sum_{n=1}^{\infty} a_n.
  • sinf(n)\sin f(n), tanf(n)\tan f(n), sin1f(n)\sin^{-1} f(n), or tan1f(n)\tan^{-1} f(n) can be replaced by f(n)f(n).
    • n=11nsin1nn=11n1n    \displaystyle \sum_{n=1}^{\infty} \cfrac{1}{n} \sin \cfrac{1}{n} \approx \displaystyle \sum_{n=1}^{\infty} \cfrac{1}{n} \cdot \cfrac{1}{n} \implies converge
    • n=11nsin11nn=11n1n    \displaystyle \sum_{n=1}^{\infty} \cfrac{1}{n} \sin^{-1} \cfrac{1}{n} \approx \displaystyle \sum_{n=1}^{\infty} \cfrac{1}{n} \cdot \cfrac{1}{n} \implies converge
    • n=1tan1n2n=11n2    \displaystyle \sum_{n=1}^{\infty} \tan \cfrac{1}{n^2} \approx \displaystyle \sum_{n=1}^{\infty} \cfrac{1}{n^2} \implies converge
    • n=1tan11n2n=11n2    \displaystyle \sum_{n=1}^{\infty} \tan^{-1} \cfrac{1}{n^2} \approx \displaystyle \sum_{n=1}^{\infty} \cfrac{1}{n^2} \implies converge
  • n=21(lnn)n    \displaystyle \sum_{n=2}^{\infty} \cfrac{1}{(\ln n)^n} \implies converge
  • n=21(lnn)k(k is positive)    \displaystyle \sum_{n=2}^{\infty} \cfrac{1}{(\ln n)^k} \quad (k \text{ is positive}) \implies diverge
  • (lnf(n))(lnf(n))p    \displaystyle \sum \cfrac{(\ln f(n))'}{(\ln f(n))^p} \implies converge if p>1p > 1, and diverge if 0<p10 < p \leq 1
  • Comparison of series
    • 1nn<1n!<1en,  12n<1n2    \cfrac{1}{n^n} < \cfrac{1}{n!} < \cfrac{1}{e^n}, \; \cfrac{1}{2^n} < \cfrac{1}{n^2} \implies converge
    • 1n<1lnn<sinn,  sin1n,  constant<lnn<n<en,  2n<n!<nn    \cfrac{1}{n} < \cfrac{1}{\ln n} < \vert \sin n \vert, \; \vert \sin^{-1} n \vert, \; \text{constant} < \ln n < n < e^n, \; 2^n < n! < n^n \implies diverge

E. Radius of Convergence

The radius of Convergence is half of the interval of convergence for a power series. For a power series n=0anf(x)n\displaystyle \sum_{n=0}^{\infty} a_n f(x)^n, the radius of Convergence rr is r=limnanan+1\begin{aligned} r = \lim_{n \to \infty} \left \vert \cfrac{a_n}{a_{n+1}} \right \vert \end{aligned}

In other words, the interval of convergence can be set f(x)<r\vert f(x) \vert < r. The test about boundaries of this interval should be determined after putting rr into the power series. There are techniques to find rr easily depending on the form of ana_n as follows.

an=na_n = n-th degree polynomial, or (1)n(-1)^nr=1r = 1
an=lnn,n,sinna_n = \ln n, \sqrt{n}, \sin nr=1r = 1
an=bna_n = b^nr=1br = \cfrac{1}{b}
an=n!a_n = n!r=0r = 0
an=(n!)b(bn)!a_n = \cfrac{(n!)^b}{(bn)!}r=bbr = b^b
an=n!nna_n = \cfrac{n!}{n^n}r=er = e
an=(1+1n)a_n = \left( 1 + \cfrac{1}{n} \right)r=1r = 1

1. Integral

Given a monotone decreasing sequence an\langle a_n \rangle, an\sum a_n converges if and only if mandn\displaystyle \int_m^{\infty} a_n dn is finite for mnm \geq n. If the integral diverges, then the series diverges as well.


[Proof] Consider ana_n as a curve. Then, the total area of rectangles below this curve is a2+a3+a_2 + a_3 + \cdots. Also, the total area of rectangles above this curve is a1+a2+a_1 + a_2 + \cdots. Since the difference between the two areas is a1a_1, this does not affect the convergence test. As such, the following inequalities hold. a2+a3+<mandn<a1+a2+\begin{aligned} a_2 + a_3 + \cdots < \int_m^{\infty} a_n dn < a_1 + a_2 + \cdots \end{aligned}

Since the integral is between the two areas, the convergence test depends on whether the integral is finite.

2. Partial Sum

For two sequences an\langle a_n \rangle, bn\langle b_n \rangle, and the partial sum sn=k=1naks_n = \sum_{k = 1}^{n} a_k, the following equation holds. k=1nakbk=k=1nsk(bkbk+1)+snbn+1\begin{aligned} \sum_{k = 1}^{n} a_k b_k = \sum_{k = 1}^{n} s_k (b_k - b_{k + 1}) + s_n b_{n + 1} \end{aligned}


[Proof] For convenience, let s0=0s_0 = 0. k=1nakbk=k=1n(sksk1)bk=k=1nskbkk=1nsk1bk=k=1nskbkk=1nskbk+1+snbn+1=k=1nsk(bkbk+1)+snbn+1\begin{aligned} \sum_{k = 1}^{n} a_k b_k &= \sum_{k = 1}^{n} (s_k - s_{k - 1}) b_k = \sum_{k = 1}^{n} s_k b_k - \sum_{k = 1}^{n} s_{k - 1} b_k \\ &= \sum_{k = 1}^{n} s_k b_k - \sum_{k = 1}^{n} s_k b_{k + 1} + s_n b_{n + 1} \\ &= \sum_{k = 1}^{n} s_k (b_k - b_{k + 1}) + s_n b_{n + 1} \end{aligned}

Therefore, akbk\sum a_k b_k converges if and only if sk(bkbk+1)\sum s_k (b_k - b_{k + 1}) and the sequence snbn+1\langle s_n b_{n + 1} \rangle converge.

3. Dirichlet

If the partial sum sn=k=1naks_n = \sum_{k = 1}^{n} a_k of a sequence an\langle a_n \rangle is bounded, and limnbn=0\lim_{n \to \infty} b_n = 0 and bnbn+1b_n \geq b_{n + 1} for another sequence bn\langle b_n \rangle, then n=1anbn\sum_{n = 1}^{\infty} a_n b_n converges.


[Proof] Since bnbn+1b_n \geq b_{n + 1}, k=1nbkbk+1=b1b2+b2b3++bnbn+1=(b1b2)+(b2b3)++(bnbn+1)=b1bn+1n=1bnbn+1=b1\begin{aligned} \sum_{k = 1}^{n} \left| b_k - b_{k + 1} \right| &= \left| b_1 - b_2 \right| + \left| b_2 - b_3 \right| + \cdots + \left| b_n - b_{n + 1} \right| \\ &= (b_1 - b_2) + (b_2 - b_3) + \cdots + (b_n - b_{n + 1}) = b_1 - b_{n + 1} \\\\ \Longrightarrow \sum_{n = 1}^{\infty} \left| b_n - b_{n + 1} \right| &= b_1 \end{aligned}

Therefore, n=1anbn\sum_{n = 1}^{\infty} a_n b_n converges as well by the partial sum theorem.

4. Abel

If n=1an\sum_{n = 1}^{\infty} a_n converges and a monotonic sequence bn\langle b_n \rangle is bounded, then n=1anbn\sum_{n = 1}^{\infty} a_n b_n converges.


[Proof] If bn\langle b_n \rangle is increasing, k=1nbkbk+1=b1b2+b2b3++bnbn+1=(b2b1)+(b3b2)++(bn+1bn)=bn+1b1\begin{aligned} \sum_{k = 1}^{n} \left| b_k - b_{k + 1} \right| &= \left| b_1 - b_2 \right| + \left| b_2 - b_3 \right| + \cdots + \left| b_n - b_{n + 1} \right| \\ &= (b_2 - b_1) + (b_3 - b_2) + \cdots + (b_{n + 1} - b_n) = b_{n + 1} - b_1 \end{aligned}

If bn\langle b_n \rangle is decreasing, k=1nbkbk+1=b1b2+b2b3++bnbn+1=(b1b2)+(b2b3)++(bnbn+1)=b1bn+1\begin{aligned} \sum_{k = 1}^{n} \left| b_k - b_{k + 1} \right| &= \left| b_1 - b_2 \right| + \left| b_2 - b_3 \right| + \cdots + \left| b_n - b_{n + 1} \right| \\ &= (b_1 - b_2) + (b_2 - b_3) + \cdots + (b_n - b_{n + 1}) = b_1 - b_{n + 1} \end{aligned}

Therefore, n=1bnbn+1\sum_{n = 1}^{\infty} \vert b_n - b_{n + 1} \vert converges. Let sn=k=1naks_n = \sum_{k = 1}^{n} a_k, then sns_n is bounded since n=1an\sum_{n = 1}^{\infty} a_n converges, which means that n=1sn(bnbn+1)\sum_{n = 1}^{\infty} s_n (b_n - b_{n + 1}) converges absolutely. In addition, bn\langle b_n \rangle also converges by the monotone convergence theorem, which implies that snbn+1\langle s_n b_{n + 1} \rangle converges. Therefore, n=1anbn\sum_{n = 1}^{\infty} a_n b_n converges as well by the partial sum theorem.

5. Kummer

Let two sequences of positive constants be an\langle a_n \rangle and bn\langle b_n \rangle, and cn=anbnan+1bn+1c_n = \cfrac{a_n b_n}{a_{n + 1}} - b_{n + 1}.

  • (i) If lim infncn>0\liminf\limits_{n \to \infty} c_n > 0, then an\sum a_n converges.
  • (ii) If lim supncn<0\limsup\limits_{n \to \infty} c_n < 0 and 1bn\sum \cfrac{1}{b_n} diverges, then an\sum a_n diverges.

[Proof] (i) Let ρ=lim infncn\rho = \liminf\limits_{n \to \infty} c_n. Since ρ/2>0\rho/2 > 0, for some natrual number NN such that n>Nn > N, cnρρ2=ρ2\begin{aligned} c_n \geq \rho - \frac{\rho}{2} = \frac{\rho}{2} \end{aligned}

Since an+1>0a_{n + 1} > 0 for n>Nn > N, then bnanbn+1an+1ρ2an+1\begin{aligned} b_n a_n - b_{n + 1} a_{n + 1} \geq \frac{\rho}{2} a_{n + 1} \end{aligned}

By mathematical induction, for a natrual number pp, the following inequalities hold. ρ2aN+1bNaNbN+1aN+1ρ2aN+2bN+1aN+1bN+2aN+2ρ2aN+pbN+p1aN+p1bN+paN+pρ2(aN+1+aN+2++aN+p)bNaNbN+paN+p\begin{aligned} \frac{\rho}{2} a_{N + 1} &\leq b_N a_N - b_{N + 1} a_{N + 1} \\ \frac{\rho}{2} a_{N + 2} &\leq b_{N + 1} a_{N + 1} - b_{N + 2} a_{N + 2} \\ &\vdots \\ \frac{\rho}{2} a_{N + p} &\leq b_{N + p - 1} a_{N + p - 1} - b_{N + p} a_{N + p} \\\\ \Longrightarrow \frac{\rho}{2} (a_{N + 1} + &a_{N + 2} + \cdots + a_{N + p}) \leq b_N a_N - b_{N + p} a_{N + p} \end{aligned}

For sn=k=1naks_n = \sum_{k = 1}^{n} a_k, sN+psN2ρ(bNaNbN+paN+p)2ρbNaN\begin{aligned} s_{N + p} - s_N \leq \frac{2}{\rho} (b_N a_N - b_{N + p} a_{N + p}) \leq \frac{2}{\rho} b_N a_N \end{aligned}

This result implies that the sequence sn\langle s_n \rangle is bounded. Therefore, an\sum a_n converges.

(ii) For some natrual number NN such that n>Nn > N, cn<0c_n < 0. That is, the sequence anbn\langle a_n b_n \rangle is increasing since bnanbn+1an+1<0b_n a_n - b_{n + 1} a_{n + 1} < 0 for n>Nn > N. Therefore, k=1nakk=1Nak+k=N+1nbNaNbk=k=1Nak+bNaNk=N+1n1bk\begin{aligned} \sum_{k = 1}^{n} a_k \geq \sum_{k = 1}^{N} a_k + \sum_{k = N + 1}^{n} \frac{b_N a_N}{b_k} = \sum_{k = 1}^{N} a_k + b_N a_N \sum_{k = N + 1}^{n} \frac{1}{b_k} \end{aligned}

Accordingly, an\sum a_n diverges since 1bn\sum \cfrac{1}{b_n} diverges.

6. Raabe

For a sequence of positive constants an\langle a_n \rangle, an\sum a_n converges if ρ>1\rho > 1 and an\sum a_n diverges if ρ<1\rho < 1 given ρ=limnn(anan+11)\begin{aligned} \rho = \lim\limits_{n \to \infty} n \left( \cfrac{a_n}{a_{n + 1}} - 1\right) \end{aligned}


[Proof] Let bn=nb_n = n. Applying Kummer’s test to two sequences an\langle a_n \rangle and bn\langle b_n \rangle, limn(anbnan+1bn+1)=ρ1\begin{aligned} \lim\limits_{n \to \infty} \left( \cfrac{a_n b_n}{a_{n + 1}} - b_{n + 1}\right) = \rho - 1 \end{aligned}

Therefore, an\sum a_n converges if ρ1>0\rho - 1 > 0 and an\sum a_n diverges if ρ1<0\rho - 1 < 0

7. Bertrand

Let an\langle a_n \rangle be a sequence of positive constants and NN be a natural number such that N2N \geq 2.

  • (i) an\sum a_n converges if the following inequality holds for a real number A>1A > 1 and nNn \geq N.
anan+11+1n+Anlnn\begin{aligned} \cfrac{a_n}{a_{n + 1}} \geq 1 + \cfrac{1}{n} + \cfrac{A}{n \ln n} \end{aligned}
  • (ii) an\sum a_n diverges if the following inequality holds for nNn \geq N.
anan+11+1n+1nlnn\begin{aligned} \cfrac{a_n}{a_{n + 1}} \leq 1 + \cfrac{1}{n} + \cfrac{1}{n \ln n} \end{aligned}

[Proof] (i) From the definition of Euler’s number, (1+1n)n<e    nln(1+1n)<1    ln(n+1n)<1n    0<ln(nn+1)+1n\begin{aligned} \left( 1 + \frac{1}{n} \right)^n < e \iff n \ln \left( 1 + \frac{1}{n} \right) < 1 \iff \ln \left( \frac{n + 1}{n} \right) < \frac{1}{n} \iff 0 < \ln \left( \frac{n}{n + 1} \right) + \frac{1}{n} \end{aligned}

Now, reforming the original inequality, anan+1nlnn(n+1)lnn+Aanan+1nlnn(n+1)ln(n+1)(n+1)ln(nn+1)+A>n+1n+A\begin{aligned} \cfrac{a_n}{a_{n + 1}} n \ln n &\geq (n + 1)\ln n + A \\ \Longrightarrow \cfrac{a_n}{a_{n + 1}} n \ln n - (n + 1) \ln (n + 1) &\geq (n + 1)\ln \left( \frac{n}{n + 1} \right) + A > -\frac{n + 1}{n} + A \end{aligned}

Since A1>0A - 1 > 0, for some natrual number N1N_1 such that nN1n \geq N_1, 1n<12(A1)\begin{aligned} \frac{1}{n} < \frac{1}{2} (A - 1) \end{aligned}

Thus, when nmax(N,N1)n \geq \max(N, N_1), anan+1nlnn(n+1)ln(n+1)>n+1n+A=1n+A1>12(A1)>0\begin{aligned} \cfrac{a_n}{a_{n + 1}} n \ln n - (n + 1) \ln (n + 1) > -\frac{n + 1}{n} + A = -\frac{1}{n} + A - 1 > \frac{1}{2} (A - 1) > 0 \end{aligned}

Therefore, by Kummer’s test, an\sum a_n converges.

(ii) From the definition of Euler’s number, (11n)n<1e    (11n)n<(11n+1)n+1<1e    (n+1)ln(nn+1)<1\begin{aligned} \left( 1 - \frac{1}{n} \right)^n < \frac{1}{e} \iff \left( 1 - \frac{1}{n} \right)^n < \left( 1 - \frac{1}{n + 1} \right)^{n + 1} < \frac{1}{e} \iff (n + 1) \ln \left( \frac{n}{n + 1} \right) < -1 \end{aligned}

Now, reforming the original inequality, anan+1nlnn(n+1)lnn+1anan+1nlnn(n+1)ln(n+1)(n+1)ln(nn+1)+1<1+1=0\begin{aligned} \cfrac{a_n}{a_{n + 1}} n \ln n &\leq (n + 1)\ln n + 1 \\ \Longrightarrow \cfrac{a_n}{a_{n + 1}} n \ln n - (n + 1) \ln (n + 1) &\leq (n + 1)\ln \left( \frac{n}{n + 1} \right) + 1 < -1 + 1 = 0 \end{aligned}

Since n=21/(nlnn)\sum_{n = 2}^{\infty} 1/(n \ln n) diverges, an\sum a_n diverges by Kummer’s test.

8. Gauss

Let an\langle a_n \rangle be a sequence of positive constants. an\sum a_n converges if and only if A>1A > 1 if the following conditions hold.

  • For a sequence vn\langle v_n \rangle, vnC/n1+k\vert v_n \vert \leq C / n^{1 + k} where kk and CC are positive real numbers and MM is a natural number such that nMn \geq M.
  • For some natrual number NN such that nNn \geq N, anan+1=1+An+vn\cfrac{a_n}{a_{n + 1}} = 1 + \cfrac{A}{n} + v_n.

[Proof] By the assumption, for nNn \geq N, n(anan+11)=A+nvn\begin{aligned} n \left( \cfrac{a_n}{a_{n + 1}} - 1 \right) = A + n v_n \end{aligned}

Also, nvnC/nk\vert n v_n \vert \leq C / n^{k} since vnC/n1+k\vert v_n \vert \leq C / n^{1 + k} for nMn \geq M. When k>0k > 0, limn1/nk=0\lim\limits_{n \to \infty} 1 / n^k = 0, then limnnvn=0\lim\limits_{n \to \infty} n v_n = 0. Therefore, limnn(anan+11)=A+limnnvn=A\begin{aligned} \lim_{n \to \infty} n \left( \cfrac{a_n}{a_{n + 1}} - 1 \right) = A + \lim_{n \to \infty} n v_n = A \end{aligned}

By Raabe’s test, an\sum a_n converges if A>1A > 1 and an\sum a_n diverges if A<1A < 1. Now, consider the case of A=1A = 1. Let N1=max(N,M)N_1 = \max(N, M). Reforming the original equation for nN1n \geq N_1, anan+1=1+1n+vnnlnnnlnn\begin{aligned} \cfrac{a_n}{a_{n + 1}} = 1 + \frac{1}{n} + \frac{v_n n \ln n}{n \ln n} \end{aligned}

For nN1n \geq N_1, vnnlnnClnn/nk\vert v_n n \ln n \vert \leq C \ln n / n^k. Also, since limnlnn/nk=0\lim\limits_{n \to \infty} \ln n / n^k = 0 for k>0k > 0, limnvnnlnn=0\lim\limits_{n \to \infty} v_n n \ln n = 0. Therefore, for some natrual number N2N_2 such that nN2n \geq N_2, vnnlnn1\vert v_n n \ln n \vert \leq 1. Thus, when n=max(N1,N2)n = \max(N_1, N_2), anan+11+1n+1nlnn\begin{aligned} \cfrac{a_n}{a_{n + 1}} \leq 1 + \frac{1}{n} + \frac{1}{n \ln n} \end{aligned}

By Bertrand’s test, an\sum a_n diverges.

9. Simplified Gauss

From Gauss’s test, consider that vn=rn/n2v_n = r_n / n^2 and k=1k = 1. Let an\langle a_n \rangle be a sequence of positive constants, and rn\langle r_n \rangle be a bounded sequence. an\sum a_n converges if and only if A>1A > 1 if the following condition holds. anan+1=1+An+rnn2\begin{aligned} \cfrac{a_n}{a_{n + 1}} = 1 + \frac{A}{n} + \frac{r_n}{n^2} \end{aligned}


[Proof] It is trivial by Gauss’s test.

10. Binomial series

For a real number β\beta and a nonnegative integer nn, let an=(βn)a_n = \binom{\beta}{n}.

  • (i) n=0anxn\sum\limits_{n = 0}^{\infty} a_n x^n converges if x<1\vert x \vert < 1.
  • (ii) n=0anxn\sum\limits_{n = 0}^{\infty} a_n x^n converges absolutely if β>0\beta > 0 and x=±1x = \pm 1.
  • (iii) n=0anxn\sum\limits_{n = 0}^{\infty} a_n x^n diverges if β<0\beta < 0 and x=1x = -1.
  • (iv) n=0anxn\sum\limits_{n = 0}^{\infty} a_n x^n diverges if β1\beta \leq -1 and x=1x = 1.
  • (v) n=0anxn\sum\limits_{n = 0}^{\infty} a_n x^n converges conditionally if 1<β<0-1 < \beta < 0 and x=1x = 1.

[Proof] (i) By the ratio test, n=0anxn\sum_{n = 0}^{\infty} a_n x^n converges considering the following, anan+1=β!(βn)!n!(βn1)!(n+1)!β!=n+1βnlimnan+1xn+1anxn=limn(βn)xn+1=x\begin{aligned} \cfrac{a_n}{a_{n + 1}} &= \cfrac{\beta !}{(\beta - n)! n!} \cfrac{(\beta - n - 1)!(n + 1)!}{\beta !} = \cfrac{n + 1}{\beta - n} \\\\ \Longrightarrow &\lim_{n \to \infty} \left \vert \cfrac{a_{n + 1} x^{n + 1}}{a_n x^n} \right \vert = \lim_{n \to \infty} \left \vert \cfrac{(\beta - n)x}{n + 1} \right \vert = \vert x \vert \end{aligned}

(ii) Let n>βn > \beta, then anan+1=n+1nβ=1+1+βnβ=1+1+βn(1+βnβ)=1+1+βn+β(1+β)n(nβ)=1+1+βn+1n2(nβ(1+β)nβ)\begin{aligned} \left \vert \cfrac{a_n}{a_{n + 1}} \right \vert &= \cfrac{n + 1}{n - \beta} = 1 + \cfrac{1 + \beta}{n - \beta} = 1 + \cfrac{1 + \beta}{n} \left( 1 + \cfrac{\beta}{n - \beta} \right) = 1 + \cfrac{1 + \beta}{n} + \cfrac{\beta(1 + \beta)}{n(n - \beta)} \\\\ &= 1 + \cfrac{1 + \beta}{n} + \cfrac{1}{n^2} \left( \cfrac{n \beta (1 + \beta)}{n - \beta} \right) \end{aligned}

Let A=1+βA = 1 + \beta and An=nβ(1+β)/(nβ)A_n = n \beta (1 + \beta) / (n - \beta). For n>βn > \beta, An=β(1+β)1βn{β(1+β)1ββ+1(β>0)β(1+β)(β<0)\begin{aligned} \vert A_n \vert = \left \vert \cfrac{\beta (1 + \beta)}{1 - \cfrac{\beta}{n}} \right \vert \leq \begin{cases} \cfrac{\vert \beta (1 + \beta) \vert}{1 - \cfrac{\beta}{\lfloor \beta \rfloor + 1}} \qquad (\beta > 0) \\\\ \vert \beta (1 + \beta) \vert \qquad (\beta < 0) \end{cases} \end{aligned}

So, a sequence An\langle A_n \rangle is bounded. By Gauss’s test, n=0anxn\sum\limits_{n = 0}^{\infty} a_n x^n converges absolutely if x=±1x = \pm 1 and A=1+β>1A = 1 + \beta > 1, which is β>0\beta > 0.

(iii) Since anxn=an(1)n=ana_n x^n = a_n(-1)^n = \vert a_n \vert, n=0anxn\sum\limits_{n = 0}^{\infty} a_n x^n diverges.

(iv) n=0anxn\sum\limits_{n = 0}^{\infty} a_n x^n diverges since the sequence an\langle a_n \rangle does not converge to zero considering the following, an=β!(βn)!n!=β(β1)(β(n1))12n=β(β+1)(β+(n1))12n1\begin{aligned} \vert a_n \vert &= \left \vert \cfrac{\beta !}{(\beta - n)! n!} \right \vert = \left \vert \cfrac{\beta (\beta - 1) \cdots (\beta - (n - 1))}{1 \cdot 2 \cdots \cdot n} \right \vert \\\\ &= \cfrac{\vert\beta\vert (\vert\beta\vert + 1) \cdots (\vert\beta\vert + (n - 1))}{1 \cdot 2 \cdots \cdot n} \geq 1 \end{aligned}

(v) Since 0<β<10 < -\beta < 1, k<β+k<k+1k < -\beta + k < k + 1. Then, an=β(β1)(β(n1))12n=(1)n(β)(β+1)(β+(n1))12n\begin{aligned} a_n = \cfrac{\beta (\beta - 1) \cdots (\beta - (n - 1))}{1 \cdot 2 \cdots \cdot n} = (-1)^n \cfrac{(-\beta) (-\beta + 1) \cdots (-\beta + (n - 1))}{1 \cdot 2 \cdots \cdot n} \end{aligned}

Let an=(1)nbna_n = (-1)^n b_n for a sequence bn\langle b_n \rangle such that b0=1b_0 = 1. Then, 0<bn<10 < b_n < 1 since k<β+k<k+1k < -\beta + k < k + 1. Also, bn\langle b_n \rangle is the sequence of positive numbers strictly decreasing since bn+1bn=(β)(β+1)(β+n)(n+1)!n!(β)(β+1)(β+(n1))=β+nn+1<1\begin{aligned} \cfrac{b_{n + 1}}{b_n} = \cfrac{(-\beta) (-\beta + 1) \cdots (-\beta + n)}{(n + 1)!} \cfrac{n!}{(-\beta) (-\beta + 1) \cdots (-\beta + (n - 1))} = \cfrac{-\beta + n}{n + 1} < 1 \end{aligned}

Considering lnt<t1\ln t < t - 1 for 0<t<10 < t < 1, bn=bnbn1bn1bn2b2b1b1    lnbn=k=1nlnbkbk1<k=1n(bkbk11)=k=1n(β+k1k1)=(β1)k=1n1k\begin{aligned} b_n &= \cfrac{b_n}{b_{n - 1}}\cfrac{b_{n - 1}}{b_{n - 2}} \cdots \cfrac{b_2}{b_1}b_1 \\\\ \implies \ln b_n &= \sum_{k = 1}^n \ln \cfrac{b_k}{b_{k - 1}} < \sum_{k = 1}^n \left( \cfrac{b_k}{b_{k - 1}} - 1 \right) = \sum_{k = 1}^n \left( \cfrac{-\beta + k - 1}{k} - 1 \right) = (-\beta - 1) \sum_{k = 1}^n \cfrac{1}{k} \end{aligned}

Since β1<0-\beta - 1 < 0 and k=11/k=\sum\limits_{k = 1}^{\infty} 1/k = \infty, limnlnbn=\lim\limits_{n \to \infty} \ln b_n = -\infty and limnbn=0\lim\limits_{n \to \infty} b_n = 0. By alternating series test, anxn=an=(1)nbn\sum a_n x^n = \sum a_n = \sum (-1)^n b_n converges. Meanwhile, an\sum \vert a_n \vert diverges if β<0\beta < 0. Therefore, n=0anxn\sum\limits_{n = 0}^{\infty} a_n x^n converges conditionally.


© 2025. All rights reserved.