018. Rotation

Let PP be any point in the square ABCDABCD, and let the perpendiculars drawn from points AA, BB, CC, and DD to the lines BPBP, CPCP, DPDP, and APAP be l1l_1, l2l_2, l3l_3, and l4l_4, respectively. Prove that the four lines l1l_1, l2l_2, l3l_3, and l4l_4 intersect at one point.


Let the center of square ABCDABCD be OO. Let RR be a 90-degree counterclockwise rotation centered at O. Then, by RR, each point and line are transformed as follows. AundefinedRB,BundefinedRC,CundefinedRD,DundefinedRAl1undefinedRBPundefined,l2undefinedRCPundefined,l3undefinedRDPundefined,l4undefinedRAPundefined\begin{aligned} A \xrightarrow{R} B, \qquad B \xrightarrow{R} C, &\qquad C \xrightarrow{R} D, \qquad D \xrightarrow{R} A \\\\ l_1 \xrightarrow{R} \overrightarrow{BP}, \qquad l_2 \xrightarrow{R} \overrightarrow{CP}, &\qquad l_3 \xrightarrow{R} \overrightarrow{DP}, \qquad l_4 \xrightarrow{R} \overrightarrow{AP} \end{aligned}

Since the four straight lines BPBP, CPCP, DPDP, and APAP share a point PP, let QQ be the point where PP is transformed by R1R^{-1}, then this QQ lies on the four lines l1l_1, l2l_2, l3l_3, and l4l_4.

018

Briefly, when drawing only the relationship between points AA and BB and lines BPBP, CPCP, l1l_1, l2l_2, the similarity of triangles by rotation is discovered.


© 2025. All rights reserved.