017. Can Be Factorized Further

Show that 2199212^{1992} - 1 can be expressed as the product of six integers greater than 22482^{248}.


Since 1992=8×2491992 = 8 \times 249, 219921=(2249)81=((2249)41)((2249)4+1)=((2249)21)((2249)2+1)((2249)4+1)=(22491)(2249+1)((2249)2+1)((2249)4+1)=(22491)(2249+1)((2249)2+1)((2332)3+1)=(22491)(2249+1)((2249)2+1)(2332+1)((2332)22332+1)\begin{aligned} 2^{1992} - 1 &= (2^{249})^8 - 1 = \left( (2^{249})^4 - 1 \right)\left( (2^{249})^4 + 1 \right) \\\\ &= \left( (2^{249})^2 - 1 \right)\left( (2^{249})^2 + 1 \right)\left( (2^{249})^4 + 1 \right) \\\\ &= \left( 2^{249} - 1 \right)\left( 2^{249} + 1 \right)\left( (2^{249})^2 + 1 \right)\left( (2^{249})^4 + 1 \right) \\\\ &= \left( 2^{249} - 1 \right)\left( 2^{249} + 1 \right)\left( (2^{249})^2 + 1 \right)\left( (2^{332})^3 + 1 \right) \\\\ &= \left( 2^{249} - 1 \right)\left( 2^{249} + 1 \right)\left( (2^{249})^2 + 1 \right)\left( 2^{332} + 1 \right)\left( (2^{332})^2 - 2^{332} + 1 \right) \end{aligned}

It seems that the above is the final factorized, but it can be factorized further. t2+1t^2 + 1 can be factorized if some aa can be found such that t2+1=(t+1+a)(t+1a)t^2 + 1 = (t + 1 + a)(t + 1 - a). t2+1=(t+1+a)(t+1a)=(t+1)2a2    a2=2t\begin{aligned} t^2 + 1 = (t + 1 + a)(t + 1 - a) = (t + 1)^2 - a^2 \implies a^2 = 2t \end{aligned}

Let t=2249t = 2^{249}. Then, a2=2t=2250    a=2125\begin{aligned} a^2 = 2t = 2^{250} \implies a = 2^{125} \end{aligned}

This means (2249)2+1=(2249+1+2125)(2249+12125)\begin{aligned} (2^{249})^2 + 1 = (2^{249} + 1 + 2^{125})(2^{249} + 1 - 2^{125}) \end{aligned}

Therefore, 219921=(22491)(2249+1)(2249+2125+1)(22492125+1)(2332+1)(26642332+1)\begin{aligned} 2^{1992} - 1 = \left( 2^{249} - 1 \right)\left( 2^{249} + 1 \right)\left( 2^{249} + 2^{125} + 1 \right)\left( 2^{249}- 2^{125} + 1 \right)\left( 2^{332} + 1 \right)\left( 2^{664} - 2^{332} + 1 \right) \end{aligned}

Note that the six integers are greater than 22482^{248}.


© 2025. All rights reserved.