011. Finding a Cubic Function

Given a cubic function f(x)=ax3+bx2+cx+df(x) = ax^3 + bx^2 + cx + d for a real number a>0a > 0, f(x)f(x) has a local minimum 1-1 and a local maximum 11 on the interval [1,1][-1, 1]. When f(1)=1f(1) = 1 and f(1)=1f(-1) = -1, find f(x)f(x).


011

A naive approach to find all coefficients is too complex. Rather using the following form is much more helpful to find them. Let f(α)=f(β)=0f'(\alpha) = f'(\beta) = 0. f(x)=a(x1)(xα)2+1=a{x3(1+2α)x2+(2α+α2)x}aα2+1f(x)=a(x+1)(xβ)21=a{x3+(12β)x2+(2β+β2)x}+aβ21\begin{aligned} f(x) &= a(x - 1)(x - \alpha)^2 + 1 \\ &= a \{ x^3 - (1 + 2\alpha)x^2 + (2\alpha + \alpha^2)x \} - a\alpha^2 + 1\\\\ f(x) &= a(x + 1)(x - \beta)^2 - 1 \\ &= a \{ x^3 + (1 - 2\beta)x^2 + (-2\beta + \beta^2)x \} + a\beta^2 - 1 \end{aligned}

Comparing coefficients, {  βα=1  (α+β)(αβ+2)=0  a(α2+β2)=2    α+β=0    α=12,β=12,a=4    f(x)=4(x1)(x+12)2+1=4x33x\begin{aligned} &\begin{cases} \; \beta - \alpha = 1 \\\\ \; (\alpha + \beta)(\alpha - \beta + 2) = 0 \\\\ \; a (\alpha^2 + \beta^2) = 2 \end{cases} \\\\ &\implies \alpha + \beta = 0 \\\\ &\implies \alpha = -\frac{1}{2}, \quad \beta = \frac{1}{2}, \quad a = 4 \\\\ &\implies f(x) = 4(x - 1)\left( x + \cfrac{1}{2} \right)^2 + 1 = 4x^3 -3x \end{aligned}


© 2025. All rights reserved.