008. Parametric Area

Given a curve such that x=t2+1x = t^2 +1 and y=t2+t2y = t^2 + t - 2 for all tRt \in \mathbb{R}, calculate the area betwen this curve and xx-axis.


To find the intersection points between this curve and xx-axis, set y=0y = 0. So, the intersection points are x=5,2x = 5, 2. Besides, x=t2+1x = t^2 + 1 is minimized to x=1x = 1 when t=0t = 0. y=t2+t2=(t+2)(t1)=0    t=2,1\begin{aligned} y = t^2 + t - 2 = (t + 2)(t - 1) = 0 \implies t = -2, 1 \end{aligned}

008

In general, the parametric area can be calculated from the following formula when x=g(t)x = g(t), y=f(t)y = f(t), a=g(α)a = g(\alpha), and b=g(β)b = g(\beta). Noting that dx=g(t)dtdx = g'(t)dt, abydx=αβyg(t)dt=αβf(t)g(t)dt\begin{aligned} \int_{a}^{b} y dx = \int_{\alpha}^{\beta} y g'(t)dt = \int_{\alpha}^{\beta} f(t) g'(t)dt \end{aligned}

Therefore, the area is Area=02f(t)g(t)dt01f(t)g(t)dt=02f(t)g(t)dt+01f(t)g(t)dt=20f(t)g(t)dt+01f(t)g(t)dt=21f(t)g(t)dt=21(t2+t2)(2t)dt=212t3+2t24tdt=[t42+2t332t2]21=(12+232)(81638)=92\begin{aligned} \text{Area} &= \left \vert \int_{0}^{-2} f(t) g'(t)dt \right \vert - \left \vert \int_{0}^{1} f(t) g'(t)dt \right \vert = -\int_{0}^{-2} f(t) g'(t)dt + \int_{0}^{1} f(t) g'(t)dt \\\\ &= \int_{-2}^{0} f(t) g'(t)dt + \int_{0}^{1} f(t) g'(t)dt = \int_{-2}^{1} f(t) g'(t)dt \\\\ &= \int_{-2}^{1} (t^2 + t - 2)(2t) dt = \int_{-2}^{1} 2t^3 + 2t^2 - 4t dt \\\\ &= \left[ \cfrac{t^4}{2} + \cfrac{2t^3}{3} - 2t^2\right]_{-2}^{1} = \left( \cfrac{1}{2} + \cfrac{2}{3} - 2 \right) - \left( 8 - \cfrac{16}{3} - 8 \right) = \cfrac{9}{2} \end{aligned}


© 2025. All rights reserved.